wiki:docs/CommissioningPlan

Version 9 (modified by mdepasca, 5 years ago) (diff)

--

SHARK-NIR Commissioning Plan

This document lays out the procedures and performance requirements for commissioning the SHARK-NIR instrument. Specifically, it lists the on-telescope activities needed to bring SHARK-NIR online for scientific exploitation starting from unpacking the boxes at LBT with the exception of the instrument installation at the LBT Bent Gregogian Central focal station.

The commissioning is broadly divided into three phases:

Phase 1: We start from inspecting the boxes at LBT mountain bay, unpacking and installing the instrument at the mountain lab for alignment verification and functionality checks. All of these are daytime activities.

Phase 2: The activities after the installation of SHARK-NIR at the SX central bent Gregorian focus of LBT to the acquirement of the first nighttime telescope collimation model of the instrument form the Phase 2. Most of the activities are daytime. The only nighttime activity is to check the pointing, acquisition sequence and getting the first nighttime telescope collimation model for SHARK-NIR.

Phase 3: Phase 3 of the commissioning starts from sending preset to the telescope to testing individual SHARK-NIR observation modes for performance to the total SHARK-NIR performance. All the activities are nighttime. By the end of this phase, SHARK-NIR is ready for Science Verification.

Note that the corresponding evolving doc in SHARK-NIR Dropbox folder is SHARK-NIR-INAFP-COM-001_CommissioningPlan.docx. There is also an excel file listing the activities titled SHARK-NIR-INAFP-COM-002_CommissioningActivityList.xlsx.

Applicable Documents

No. Title Number & Issue
AD1 SHARK-NIR Schedule SHARK-NIR-INAFP-SCH-001_Issue 1.2.pdf
AD2 SHARK-NIR SW ICD SHARK-NIR-INAFP-SW-ICD-FDR Issue 0.4
AD3 SHARK-NIR Installation Plan SHARK-NIR-INAFP-IP-001 Issue 0.1
AD4 SHARK-NIR Calibrations SHARK-NIR-INAFP-MAN-004

Category

The table below lists the categories of commissioning activities.

Category NameCategory Number
Installation, integration, verification C1
Daytime testing (functionality and operability)C2
Daytime calibrationC3
Nighttime testing (functionality and operability)C4
Nighttime calibrationC5
Nighttime testing for performanceC6

Naming structure of the commissioning activity

Each commissioning test/activity has a unified structure as follows:


Name of the commissioning activity

  • phase: states the phase of the commissioning (1/2/3)
  • status: reports the current status of the test (draft, final, complete)
  • category: one of the categories mentioned above
  • recurrence: describes how frequently the test must be executed
  • duration: estimates the time required to complete the test

Description

  • Contains a general description of the test

Prerequisites

  • Lists items that must be in place before the test begins

Procedure

  • Explains in detail how to execute the test

Success Criteria

  • Enumerates the outcome associates with successful completion of the test

Notes

  • Additional supporting information

LBTO Support

  • Mention if (and what) support required from LBTO

Associated SHARK-NIR personnel

  • Mentions here who are the associated personnel to the test

Date performed and by whom

  • Mentions who performed the test and when

Additional Information

Note:

  • as of now, there is no one to one correspondence with the evolving doc (eventually they will be the same)
  • you may see that there is some repetition in the activities. this needs to be sorted out eventually.
  • the order of the activities may also be changed later.
  • the details of each of the activity (when you click on them individually) may not be complete and will be refined in time.

To be added:

  1. Nighttime performance activities:
    • Evaluate the seeing performance and Strehl achieved from the LBTI AO in closed-loop and in various seeing conditions.
  1. Look-up table activities:
    • NCPA measurement for different telescope elevations?

Reminders:

  • The space requirements at the mountain bay (@LBT) should be communicated to LBT at the earliest, along with the availability of crane operator, container moving tools, etc. Depending upon the month of the year, the mountain bay can be seriously booked (especially during July-October months due to summer shutdown).
  • The same is true for the cleanroom near the mountain bay. If we need access to the LBTO network in the cleanroom, there are some network ports. But we may need to tell them in advance (Talk to Florian Briegel for more info).
  • Note that if there is any ASM repair/activity scheduled in the cleanroom, preference is always for them and we will have to co-live or get after that.
  • From the LINC-NIRVANA commissioning experience, it is always better to keep the tools associated with a particular alignment together, to avoid looking for it in all the boxes there. Also, there MUST be a living inventory wiki page where everyone should note down what is taken and kept in the box/container.
  • Space required by SHARK-NIR at 3L is already mentioned to JC and CV. Later, we may need to specify the exact area.

Commissioning Activity

In this section, you can see all the commissioning activities listed in chronological order. If you click the individual activity, you can see more details of it.

Phase 1

SHARK-NIR Location : LBT mountain bay and clean room

NumberActivity NameDay / NightDuration (mins)Maximum Duration (mins)CategoryLBTO Support
P1.1Inspection of the boxesDay4040C1-
P1.2Opening boxes and their visual inspectionDay6060C1crane operator to lift and move containers/boxes, 1-2 crew to support unpacking and moving
P1.3Install the instrument in the cleanroom with its electronics cabinetDay240240C1crane operator to lift and move containers/boxes, 1-2 crew to support installation on the mechanical structure
P1.4Cable in the instrument, power on, and connect to LBT networkDay120120C1support to connect to LBT network? Any electronics support?
P1.5Start all the services and initialize all the motorsDay2020C1-
P1.6Cool down the cryostatDay480480C1Liquid N2 fill
P1.7Verification of the operability of the motors and light sourcesDay6060C1-
P1.8Verification of the internal alignment of the instrumentDay120120C1-
P1.9Science detector calibrationsDay6060C1-

Phase 2

SHARK-NIR Location : LBT platform

NumberActivity NameDay / NightDuration (mins)Maximum Duration (mins)CategoryLBTO Support
P2.1Activating the instrument and testing instrument states & transitionsDay60 60C2Verify the working of emergency button
P2.2Instrument operability and performanceDay180180C2-
P2.3TCS communication testDay6060C2Authorise SHARK-NIR, connecting to ASM+LBTI AO system, able to send preset, receiving LBT telemetry and details for the fitswriter
P2.4Align SHARK-NIR to the telescopeDay120120C2Mounting RR on the SX side. Support from LBTI?
P2.5Synergy with LBTI AO system testDay120120C2Mounting RR on the SX side. Support from LBTI for AO running
P2.6Measurement of NCPADay180180C3Mounting RR on the SX side, Support from LBTI for AO running
P2.7Looking for filter defects/effects/featuresDay6060C2Support from LBTI for AO running
P2.8Flexure testsDay180180C2Support from LBTI for AO running
P2.9Nighttime acquisition and setting telescope collimation for nightNight180180C4Support from LBTI for AO running

Phase 3

SHARK-NIR Location : LBT platform

NumberActivity NameDay / NightDuration (mins)Maximum Duration (mins)CategoryLBTO Support
P3.1Telescope control – sending presetNight1010C4LBTI(AO), presence of John Hill while collimating, Steve Allensen as TO
P3.2Telescope control – checking focus for different wavelengthsNight1030C4-
P3.3Telescope control – telescope mode and offsetNight3030C4LBTI(AO)
P3.4Telescope control – focal plane geometry estimationNight1060C4LBTI(AO)
P3.5Check the acquisition procedureNight6060C4LBTI(AO)
P3.6Orient the coronagraphsNight2040C4LBTI(AO)
P3.7Estimate the instrument throughputNight1050C4LBTI(AO)
P3.8Estimate the limiting magnitude for every filterNight1050C4LBTI(AO)
P3.9Estimate sky background for broadband filtersNight1050C4LBTI(AO)
P3.10Verify the ADC rotation on skyNight2040C4LBTI(AO)
P3.11Ghost positions on the SCICAMNight1050C4LBTI(AO)
P3.12Checking field-stabilized mode/bearing rotation serviceNight2040C4LBTI(AO)
P3.13Center the slitNight4040C4LBTI(AO)
P3.14Astrometry plate scale and orientationNight-30C5LBTI(AO)
P3.15Flux calibration (off-centered target observation)Night-20C5LBTI(AO)
P3.16Instrumental throughput and absolute flux calibrationNight2040C5LBTI(AO)
P3.17Atmospheric calibration and absolute flux calibrationNight-20C5LBTI(AO)
P3.18Large spatial scale instrument and telescope flat fieldNight-60C5LBTI(AO)
P3.19Sky backgroundNight-10C5LBTI(AO)
P3.20Instrumental background for scienceDay-20C3-
P3.21Star centerNight-20C5LBTI(AO)
P3.22Instrument flat field, detector linearity and bad pixelsDay-20C3-
P3.23Wavelength calibrationDay-10C3-
P3.24Thermal backgroundDay-60C3-
P3.25Detector gainDay-20C3-
P3.26Detector persistenceDay-20C3-
P3.27Spectral resolutionDay-10C3-
P3.28Ghost calibrationDay2060C3-
P3.29Distortion mapNight-10C5LBTI(AO)
P3.30Filter wheels reproducibility monitoringDay-20C3-
P3.31Pupil alignmentNight-5C4LBTI(AO)
P3.32PSF AlignmentNight-5C4LBTI(AO)

Comments

MDP

  • all operation that should be supported by control software automated procedures, should be defined by the reponsible person with software person in copy or in accordance with software department (better) (e.g.: P1.8 and P1.9)